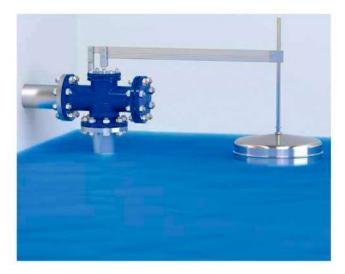


Mod. ATHENA

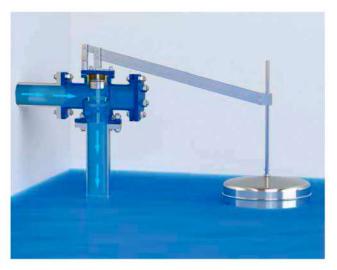
La ATHENA è una valvola a galleggiante a sede unica compensata, che mantiene automaticamente il livello costante di un serbatoio o cisterna, indipendentemente dalle variazioni di pressione a monte, e si chiude al raggiungimento del livello massimo stabilito. Grazie alla sua tecnologia esclusiva ATHENA raggiunge il massimo livello di affidabilità e prestazioni.

Caratteristiche costruttive e vantaggi

- Corpo di ghisa sferoidale a tre vie, per consentire il posizionamento sia a squadra che a via diritta; sede sostituibile e pistone d'acciaio inossidabile; ghiere di scorrimento di bronzo.
- Blocco mobile comprendente albero, otturatore, porta-guarnizione e pistone auto-pulente (brevetto CSA), innovativa tecnologia che diminuisce l'accumulo di sporcizia, riducendo la manutenzione.
- Il leverismo, d'acciaio zincato o inossidabile, è composto da due aste (una per i DN 40, 50 e 65), unite da perni e snodi, che trasmettono il movimento verticale del galleggiante all'albero di guida del blocco mobile.
- Il galleggiante e la relativa asta sono d'acciaio inossidabile AISI 304.
- Grazie alla sede singola compensata, la valvola garantisce grande precisione di funzionamento, e tenuta perfetta anche alle basse pressioni.
- Il movimento dell'otturatore, in apertura e in chiusura, non è influenzato dalla pressione dell'acqua in ingresso, in questo modo sono evitati possibili fenomeni di moto vario e colpo d'ariete.


Applicazioni principali

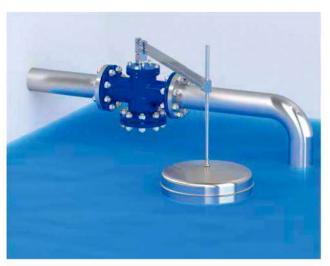
- Reti di distribuzione.
- Serbatoi antincendio.
- Sistemi d'irrigazione.
- Ogni caso in cui è richiesta la regolazione di livello costante.


Principio di funzionamento

Installata sulla condotta di alimentazione, e comandata da un largo galleggiante d'acciaio inossidabile, la valvola regola automaticamente il riempimento del serbatoio, interrompendo il flusso di mandata quando il pelo libero dell'acqua raggiunge il livello massimo, e aprendosi, invece, quando questo scende.

Valvola chiusa

Quando il pelo libero dell'acqua raggiunge il livello massimo il galleggiante, tramite la leva, chiude l'otturatore, arrestando il flusso di mandata.


Valvola aperta

Non appena il livello dell'acqua all'interno del serbatoio scende la leva, cui il galleggiante è unito, abbassa il blocco mobile in posizione d'apertura, permettendo il flusso attraverso la valvola.

Installazione a via dritta e a squadra

Il corpo a tre vie consente l'installazione a squadra o a via dritta semplicemente spostando le leve e la flangia cieca. Le leve, normalmente allineate con l'asse della valvola, possono essere ruotate di 45 o 90° rispetto all'asse della valvola in base alle esigenze d'installazione.

Funzioni accessorie

■ Dispositivo antigelo. Su richiesta, il modello Athena è munito di una presa filettata 3/8"G, in cui è possibile inserire una valvola di drenaggio, che scarichi direttamente nel serbatoio. L'apertura del drenaggio assicura, nei periodi più freddi, il flusso necessario ad evitare il congelamento dell'acqua, e conseguenti danni ai componenti interni.

Dati tecnici

Installazione

- Accertarsi che la foratura delle flange della condotta di alimentazione corrisponda a quella della valvola Athena, e che sia possibile l'installazione in posizione orizzontale con opportuni fissaggi.
- Devono essere previsti degli organi di intercettazione, per consentire le operazioni di manutenzione, e un filtro, per raccoglitore le impurità a monte della valvola.
- Collocare la valvola in un punto facilmente raggiungibile e tale da consentire le operazioni di manutenzione.
- Lo sbocco dev'essere al di sopra del livello di troppo pieno onde evitare possibili riflussi.
- In caso di alti ∆p di funzionamento raccomandiamo l'utilizzo di un riduttore ad azione diretta CSA VRCD, per evitare possibili danni legati al fenomeno della cavitazione.

Condizioni d'esercizio

Temperatura massima 70°C.

Pressione massima 16 bar; valori maggiori su richiesta. Per evitare la cavitazione, Δp massimo di 6,5 bar per l'installazione a squadra, di 4,8 bar per la via dritta.

Standard

Certificazione e collaudo secondo la norma EN 1074/5. Foratura delle flange secondo EN 1092/2. Vernice epossidica blu RAL 5005 applicata a letto fluido.

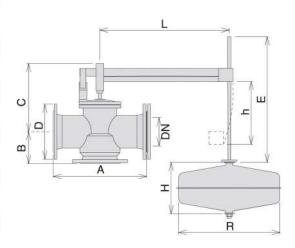
Modifiche a flange e verniciatura su richiesta.

DN mm	40	50	65	80	100	125	150	200	250	300
Kv (m³/h)/bar	21,6	21,6	46,8	68,4	108	155	245	360	648	1008

DN mm	40	50	65	80	100	125	150	200	250	300
Kv (m³/h)/bar	18,4	18,4	39,6	59,4	90	133	209	313	576	864

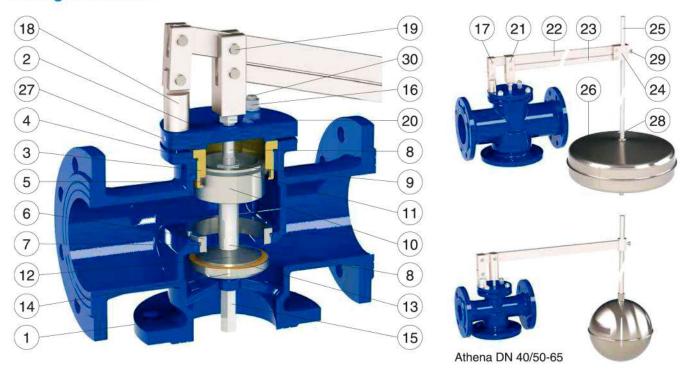
Perdite di carico - Installazione a squadra

Il coefficiente Kv rappresenta la portata che produce una perdita di carico di 1 bar nella valvola completamente aperta.

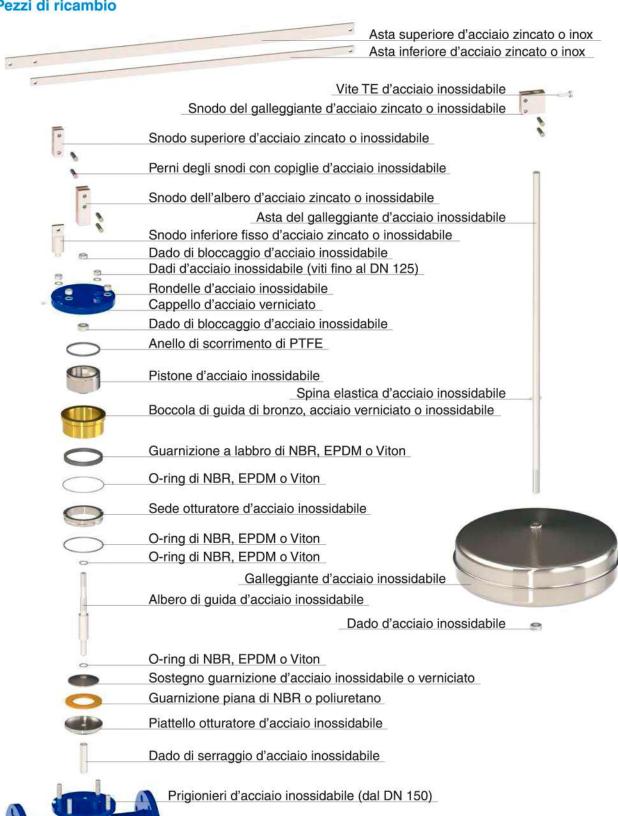

Perdite di carico - Installazione a via diritta

Il coefficiente Kv rappresenta la portata che produce una perdita di carico di 1 bar nella valvola completamente aperta.

Dimensioni e pesi

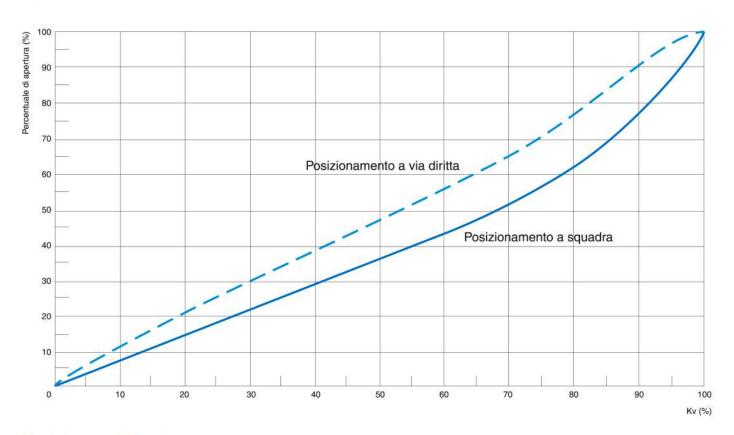

DN mm	A mm	B mm	C mm	D mm	L mm	H mm	R mm	h mm	E mm	Pesc
40	230	82,5	173	165	600	Ø2	220	105	525	21
50	230	82,5	173	165	600	Ø2	220	105	525	21
65	290	92,5	193	185	600	Ø2	220	180	525	26
80	310	100	235	200	800	200	300	210	600	33
100	350	125	233	220	800	180	400	267	600	41
125	400	125	238	250	800	180	400	267	600	49
150	480	162	371	285	1000	250	400	400	540	79
200	600	183	420	340	1000	250	400	418	540	118
250	730	270	540	405	1220	300	500	510	945	215
300	850	300	610	460	1400	400	500	610	1042	250

I valori indicati sono approssimati, consultare il servizio CSA per maggiori dettagli


Dettagli costruttivi

N.	Componente	Materiale standard	Optional
1	Corpo	ghisa sferoidale GJS 450-10 o GJS 500-7	
2	Cappello	acciaio verniciato Fe 37	
3	Boccola di guida	bronzo CuSn5Zn5Pb5 (Fe 37 vernic. per DN 250-300)	acciaio inox AISI 304/316
4	O-ring	NBR	EPDM/Viton
5	Guarnizione a labbro	NBR	EPDM/Viton
6	Sede otturatore	acciaio inox AISI 304	acciaio inox AISI 316
7	O-ring	NBR	EPDM/Viton
8	Albero di guida	acciaio inox AISI 303	acciaio inox AISI 316
9	Dado di bloccaggio	acciaio inox AISI 304	acciaio inox AISI 316
10	Pistone	acciaio inox AISI 303	acciaio inox AISI 316
11	Anello di scorrimento	PTFE	
12	Sostegno guarnizione	ac. inox AISI 303 (ac. vernic. Fe 37 per DN 250-300)	ac. inox AISI 304/316
13	Guarnizione piana	NBR	poliuretano
14	Piattello otturatore	ac. inox AISI 303 (AISI 304 per DN 200-250-300)	acciaio inox AISI 316
15	Dado di serraggio	acciaio inox AISI 303	acciaio inox AISI 316
16	Dadi (viti fino al DN 125) e rondelle	acciaio inox AISI 304	acciaio inox AISI 316
17	Snodo superiore	acciaio zincato Fe 37	acciaio inox AISI 304/316
18	Snodo inferiore fisso	acciaio zincato Fe 37	acciaio inox AISI 304/316
19	Perni degli snodi	acciaio inox AISI 303	acciaio inox AISI 316
20	Dado di bloccaggio	acciaio inox AISI 304	acciaio inox AISI 316
21	Snodo albero	acciaio zincato Fe 37	acciaio inox AISI 304/316
22	Asta superiore	acciaio zincato Fe 37	acciaio inox AISI 304/316
23	Asta inferiore (dal DN 80)	acciaio zincato Fe 37	acciaio inox AISI 304/316
24	Snodo galleggiante (dal DN 80)	acciaio zincato Fe 37	acciaio inox AISI 304/316
25	Asta galleggiante	acciaio inox AISI 304	acciaio inox AISI 316
26	Galleggiante	acciaio inox AISI 304	acciaio inox AISI 316
27	Grano (vite TE da DN 150 a 300)	acciaio inox AISI 304	acciaio inox AISI 316
28	Spina elastica (dal DN 80)	acciaio inox AISI 304	
29	Vite TE	acciaio inox AISI 304	acciaio inox AISI 316
30	Prigionieri (da DN 150 a 300)	acciaio inox AISI 304	acciaio inox AISI 316

Pezzi di ricambio



Corpo di ghisa sferoidale

Diagramma apertura valvola-Kv

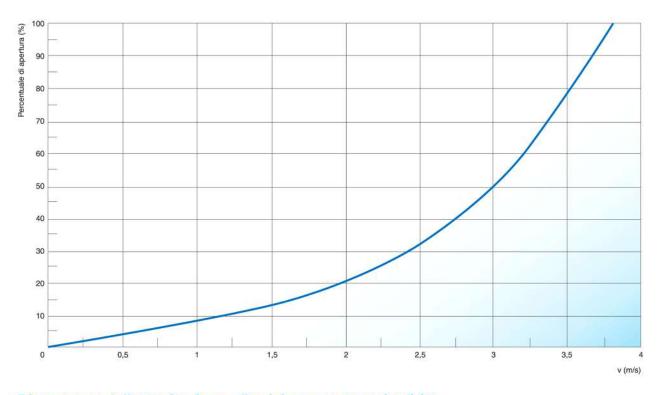
Il grafico seguente riporta il Kv della valvola Athena in relazione alla corsa dell'otturatore (entrambi i valori sono espressi in percentuale).

Portate consigliate

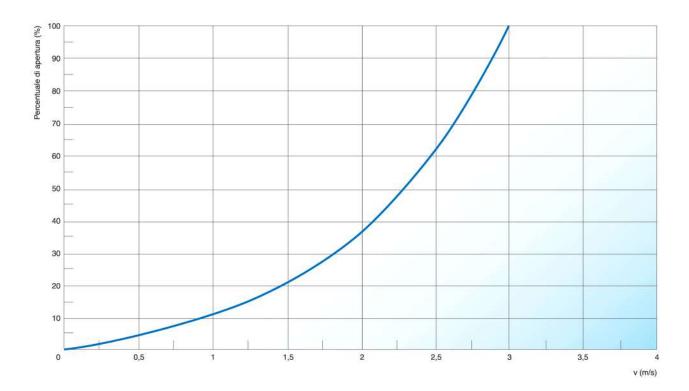
Le tabelle seguenti indicano le portate consigliate per il corretto utilizzo delle valvole a galleggiante.

Athena - posizionamento a squadra

DN (mm)	40/50	65	80	100	125	150	200	250	300
Portata min. (I/s)	0,3	0,5	0,8	1,2	1,9	2,7	4,8	7,4	11
Portata max. (I/s)	6,4	10	16	25	40	58	103	161	233
Portata emergenza (l/s)	7,8	13	20	31	49	70	125	196	282


Athena - posizionamento a via diritta

DN (mm)	40/50	65	80	100	125	150	200	250	300
Portata min. (I/s)	0,4	0,7	1,1	1,6	2,5	3,6	6,3	9,9	15
Portata max. (I/s)	5,1	8,6	13	20	31	45	81	127	183
Portata emergenza (l/s)	6,4	10	16	25	40	58	103	161	233


Diagramma della cavitazione - Posizionamento a squadra

Il grafico seguente riporta la velocità massima consigliata, in rapporto alla percentuale d'apertura della valvola, per evitare la cavitazione.

Diagramma della cavitazione - Posizionamento a via diritta

Il grafico seguente riporta la velocità massima consigliata, in rapporto alla percentuale d'apertura della valvola, per evitare la cavitazione.

